1. Matroids

Definition 1. A matroid is defined as an ordered pair consisting of a set E, known as the ground set, and a family of subsets of E called I, the family of independent subsets of E. These satisfy the following properties:

- $\emptyset \in I$.
- Every subset of an independent set is independent.
- If A and $B \in I$ and A is larger than B, then we may find $a \in A$ so that $\{a\} \cup B$ is an independent set.
Note that the third property recalls the well-known theorem from linear algebra stating that all bases must have the same number of elements.

Example 1. Let A be a matrix over a field F. Let E be the set of columns of A, and let I be the collection of subsets I of E such that the corresponding collection of column vectors are independent. Then (E, I) is a matroid, denoted M[A].

Matroids that can be represented as such an $M[A]$ are called representable.
There are several equivalent definitions of matroids, although this equivalence is not obvious. For example -

Another way to define a matroid is by its bases. A basis of a matroid is a maximal independent set. Analogously, a circuit is a minimally dependent set of a matroid.

Analogously to linear algebra, all bases of a matroid must have the same number of elements. (Why is this?) This number is called the rank of M.

We note that either the dependent sets, the bases, or the circuits of a matroid characterize the matroid completely - their simple properties may be taken as the axioms for defining a matroid. For instance, one may define a matroid as a pair (E, \mathcal{B}), where \mathcal{B} is a collection of bases, satisfying the following properties:

- \mathcal{B} is nonempty.
- If $A \neq B \in \mathcal{B}$ and $a \in A \backslash B$, then there exists $b \in B \backslash A$ such that $A \cup$ $\{b\} \backslash\{a\} \in \mathcal{B}$. This is known as the basis exchange property.
If M is a matroid on E, and $A \subset E$, then we can define a matroid on A by considering the independent subsets of A as those independent in M. There is a function $r: P(E) \rightarrow \mathbb{N}$, the rank function of M, for which $r(A)$ is the rank of the matroid defined on A. It has the following properties:
- For any subset $A, r(A) \leq|A|$.
- If $A \subset B, r(A) \leq r(B)$.
- $r(A \cup B)+r(A \cap B) \leq r(A)+r(B)$.

One may also use the rank function to obtain an alternative, equivalent definition of a matroid.

Exercise 1. Can you come up with a definition of matroids using circuits?
Let M be a matroid on E, a finite set. The closure $c l(A)$ of a subset A is given to be the set $\operatorname{cl}(A)=\{x \in E: r(A)=r(A \cup\{x\}\}$. More generally, define a closure operator $c l: \mathcal{P}(E) \rightarrow \mathcal{P}(E)$ to be a function satisfying the following conditions:

- For all subsets $X, X \subset \operatorname{cl}(X)$.
- For all subsets $X, \operatorname{cl}(X)=\operatorname{cl}(c l(X))$.
- If $X \subset Y, \operatorname{cl}(X) \subset \operatorname{cl}(Y)$.
- If $a, b \in E$ and $Y \subset E$, if $a \in \operatorname{cl}(Y \cup\{b\}) \backslash c l(Y)$ then $b \in c l(Y \cup\{a\}) \backslash c l(Y)$.

These properties may also be taken as a definition of a matroid - every function $c l: P(E) \rightarrow P(E)$ that obeys these properties determines a matroid.

We can also define a matroid using graphs. Given a graph G, we let E be the set of edges of G, and \mathcal{I} the collection of all subsets I of E so that I does not contain any cycles. We claim that this is a matroid; the matroid $M(G)$ is often called a cycle matroid, or graphical matroid.
Exercise 2. What are the bases and circuits of a graphical matroid?
A graphical matroid is also a representable matroid. To show this, we first make a definition:

Definition 2. The incidence matrix of a graph G is a $|V| \times|E|$ sized matrix A where $A_{v, e}=1$ if v is a vertex of the edge e, and e is not a loop. Otherwise, $A_{v, e}=0$.

We claim that:
Theorem 1. Over the field $\mathbb{F}_{2}, M(G)$ is isomorphic to $M[A]$, where A is defined above.
Proof. We wish to show that for any subset $I \subset E, I$ contains cycles of G iff it corresponds to columns of A which are independent. It suffices to show that C is a minimal (by inclusion) cycle of G if and only if the corresponding columns are minimally dependent (again by inclusion).

If C is a loop, the corresponding column is the null vector. Otherwise, each vertex met by C is met by exactly two edges of C. It follows that the sum of the vectors is zero modulo two, hence the vectors are dependent. Conversely, let D be a minimally dependent collection of columns; if D is the zero column then the corresponding edge is a loop. Else the sum of the vectors in D is 0 (since we are working with \mathbb{F}_{2}). Hence there exist two 1 s in the i th position for each i, and hence the corresponding edges form a cycle.

