1. Matroids

Definition 1. A matroid is defined as an ordered pair consisting of a set E, known as the ground set, and a family of subsets of E called I, the family of independent subsets of E. These satisfy the following properties:

- $\emptyset \in I$.
- Every subset of an independent set is independent.
- If A and $B \in I$ and A is larger than B, then we may find $a \in A$ so that $\{a\} \cup B$ is an independent set.

Note that the third property recalls the well-known theorem from linear algebra stating that all bases must have the same number of elements.

Example 1. Let A be a matrix over a field F. Let E be the set of columns of A, and let I be the collection of subsets I of E such that the corresponding collection of column vectors are independent. Then (E, I) is a matroid, denoted M[A].

Matroids that can be represented as such an M[A] are called **representable**.

There are several equivalent definitions of matroids, although this equivalence is not obvious. For example -

Another way to define a matroid is by its bases. A **basis** of a matroid is a maximal independent set. Analogously, a **circuit** is a minimally dependent set of a matroid.

Analogously to linear algebra, all bases of a matroid must have the same number of elements. (Why is this?) This number is called the **rank** of M.

We note that either the dependent sets, the bases, or the circuits of a matroid characterize the matroid completely - their simple properties may be taken as the axioms for defining a matroid. For instance, one may define a matroid as a pair (E, \mathcal{B}) , where \mathcal{B} is a collection of bases, satisfying the following properties:

- \mathcal{B} is nonempty.
- If $A \neq B \in \mathcal{B}$ and $a \in A \setminus B$, then there exists $b \in B \setminus A$ such that $A \cup \{b\} \setminus \{a\} \in \mathcal{B}$. This is known as the **basis exchange property**.

If M is a matroid on E, and $A \subset E$, then we can define a matroid on A by considering the independent subsets of A as those independent in M. There is a function $r: P(E) \to \mathbb{N}$, the **rank function** of M, for which r(A) is the rank of the matroid defined on A. It has the following properties:

- For any subset $A, r(A) \leq |A|$.
- If $A \subset B$, $r(A) \leq r(B)$.
- $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$.

One may also use the rank function to obtain an alternative, equivalent definition of a matroid.

Exercise 1. Can you come up with a definition of matroids using circuits?

Let *M* be a matroid on *E*, a finite set. The **closure** cl(A) of a subset *A* is given to be the set $cl(A) = \{x \in E : r(A) = r(A \cup \{x\}\})$. More generally, define a **closure operator** $cl : \mathcal{P}(E) \to \mathcal{P}(E)$ to be a function satisfying the following conditions:

- For all subsets $X, X \subset cl(X)$.
- For all subsets X, cl(X) = cl(cl(X)).
- If $X \subset Y$, $cl(X) \subset cl(Y)$.
- If $a, b \in E$ and $Y \subset E$, if $a \in cl(Y \cup \{b\}) \setminus cl(Y)$ then $b \in cl(Y \cup \{a\}) \setminus cl(Y)$.

These properties may also be taken as a definition of a matroid - every function $cl: P(E) \rightarrow P(E)$ that obeys these properties determines a matroid.

We can also define a matroid using graphs. Given a graph G, we let E be the set of edges of G, and \mathcal{I} the collection of all subsets I of E so that I does not contain any cycles. We claim that this is a matroid; the matroid M(G) is often called a **cycle matroid**, or **graphical matroid**.

Exercise 2. What are the bases and circuits of a graphical matroid?

A graphical matroid is also a representable matroid. To show this, we first make a definition:

Definition 2. The incidence matrix of a graph G is a $|V| \times |E|$ sized matrix A where $A_{v,e} = 1$ if v is a vertex of the edge e, and e is not a loop. Otherwise, $A_{v,e} = 0$.

We claim that:

Theorem 1. Over the field \mathbb{F}_2 , M(G) is isomorphic to M[A], where A is defined above.

Proof. We wish to show that for any subset $I \subset E$, I contains cycles of G iff it corresponds to columns of A which are independent. It suffices to show that C is a minimal (by inclusion) cycle of G if and only if the corresponding columns are minimally dependent (again by inclusion).

If C is a loop, the corresponding column is the null vector. Otherwise, each vertex met by C is met by exactly two edges of C. It follows that the sum of the vectors is zero modulo two, hence the vectors are dependent. Conversely, let D be a minimally dependent collection of columns; if D is the zero column then the corresponding edge is a loop. Else the sum of the vectors in D is 0 (since we are working with \mathbb{F}_2). Hence there exist two 1s in the *i*th position for each *i*, and hence the corresponding edges form a cycle.