
1. Matroids

Definition 1. A matroid is defined as an ordered pair consisting of a set E, known
as the ground set, and a family of subsets of E called I, the family of independent
subsets of E. These satisfy the following properties:

• ∅ ∈ I.
• Every subset of an independent set is independent.
• If A and B ∈ I and A is larger than B, then we may find a ∈ A so that
{a} ∪B is an independent set.

Note that the third property recalls the well-known theorem from linear algebra
stating that all bases must have the same number of elements.

Example 1. Let A be a matrix over a field F. Let E be the set of columns of A,
and let I be the collection of subsets I of E such that the corresponding collection of
column vectors are independent. Then (E, I) is a matroid, denoted M[A].

Matroids that can be represented as such an M [A] are called representable.
There are several equivalent definitions of matroids, although this equivalence is

not obvious. For example -
Another way to define a matroid is by its bases. A basis of a matroid is a

maximal independent set. Analogously, a circuit is a minimally dependent set of
a matroid.

Analogously to linear algebra, all bases of a matroid must have the same number
of elements. (Why is this?) This number is called the rank of M .

We note that either the dependent sets, the bases, or the circuits of a matroid
characterize the matroid completely - their simple properties may be taken as the
axioms for defining a matroid. For instance, one may define a matroid as a pair
(E,B), where B is a collection of bases, satisfying the following properties:

• B is nonempty.
• If A 6= B ∈ B and a ∈ A\B, then there exists b ∈ B\A such that A ∪
{b}\{a} ∈ B. This is known as the basis exchange property.

If M is a matroid on E, and A ⊂ E, then we can define a matroid on A by
considering the independent subsets of A as those independent in M . There is a
function r : P (E)→ N, the rank function of M , for which r(A) is the rank of the
matroid defined on A. It has the following properties:

• For any subset A, r(A) ≤ |A|.
• If A ⊂ B, r(A) ≤ r(B).
• r(A ∪B) + r(A ∩B) ≤ r(A) + r(B).

One may also use the rank function to obtain an alternative, equivalent definition
of a matroid.

Exercise 1. Can you come up with a definition of matroids using circuits?

Let M be a matroid on E, a finite set. The closure cl(A) of a subset A is given
to be the set cl(A) = {x ∈ E : r(A) = r(A∪{x}}. More generally, define a closure
operator cl : P(E)→ P(E) to be a function satisfying the following conditions:

• For all subsets X, X ⊂ cl(X).
• For all subsets X, cl(X) = cl(cl(X)).
• If X ⊂ Y , cl(X) ⊂ cl(Y ).
• If a, b ∈ E and Y ⊂ E, if a ∈ cl(Y ∪{b})\cl(Y ) then b ∈ cl(Y ∪{a})\cl(Y ).

1



2

These properties may also be taken as a definition of a matroid - every function
cl : P (E)→ P (E) that obeys these properties determines a matroid.

We can also define a matroid using graphs. Given a graph G, we let E be the set
of edges of G, and I the collection of all subsets I of E so that I does not contain
any cycles. We claim that this is a matroid; the matroid M(G) is often called a
cycle matroid, or graphical matroid.

Exercise 2. What are the bases and circuits of a graphical matroid?

A graphical matroid is also a representable matroid. To show this, we first make
a definition:

Definition 2. The incidence matrix of a graph G is a |V | × |E| sized matrix
A where Av,e = 1 if v is a vertex of the edge e, and e is not a loop. Otherwise,
Av,e = 0.

We claim that:

Theorem 1. Over the field F2, M(G) is isomorphic to M [A], where A is defined
above.

Proof. We wish to show that for any subset I ⊂ E, I contains cycles of G iff it
corresponds to columns of A which are independent. It suffices to show that C is
a minimal (by inclusion) cycle of G if and only if the corresponding columns are
minimally dependent (again by inclusion).

If C is a loop, the corresponding column is the null vector. Otherwise, each
vertex met by C is met by exactly two edges of C. It follows that the sum of the
vectors is zero modulo two, hence the vectors are dependent. Conversely, let D
be a minimally dependent collection of columns; if D is the zero column then the
corresponding edge is a loop. Else the sum of the vectors in D is 0 (since we are
working with F2). Hence there exist two 1s in the ith position for each i, and hence
the corresponding edges form a cycle. �


